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Mapping protein states and interactions
across the tree of life with co-fractionation
mass spectrometry

Michael A. Skinnider 1,2,3, Mopelola O. Akinlaja 1,4 & Leonard J. Foster 1,4

Wepresent CFdb, a harmonized resource of interaction proteomics data from
411 co-fractionation mass spectrometry (CF-MS) datasets spanning 21,703
fractions. Meta-analysis of this resource charts protein abundance, phos-
phorylation, and interactions throughout the tree of life, including a reference
map of the human interactome. We show how large-scale CF-MS data can
enhance analyses of individual CF-MS datasets, and exemplify this strategy by
mapping the honey bee interactome.

Cellular processes arise from the dynamic organization of proteins in
networks of physical interactions. Significant resources have been
devoted tomapping the protein interaction networks of humans and
model organisms1. These networks are widely used for tasks such as
protein function prediction, disease gene prioritization, or inter-
pretation of transcriptomic and proteomic datasets2,3. However,
questions about the reproducibility of these networks have per-
sisted. Limited overlap between screens performed in different
laboratories was noted soon after the first maps of the yeast inter-
actome emerged4,5. Two decades later, large-scale efforts have pro-
duced systematic maps of the human interactome that display
relatively little overlap with one another, with a mean Jaccard index
of just 0.062 between any pair of networks (Supplementary Fig. 1).
This lack of overlap has been variously attributed to differences in
the types of interactions detected by each assay and the proteins
targeted by individual screens, variation in experimental protocols or
the depth of protein identification, the presence of context-specific
interactions, or false-positives and false-negatives in the resulting
interactome maps.

CF-MS has emerged as a powerful technique to map protein
interaction networks, particularly under physiological conditions and
in non-model organisms6,7. However, CF-MS datasets are generally
collected within individual laboratories and analyzed in isolation. At
the same time, the increasingly wide uptake of CF-MS has led to hun-
dreds of datasets being deposited in public proteomic databases. This
wealth of data opens up opportunities for larger-scale data integration
to reveal patterns that are reproducible across dozens or even hun-
dreds of datasets.

We previously described a meta-analysis of 206 uniformly pro-
cessed CF-MS datasets, and used this data to establish best practices
for thedesign and analysis ofCF-MSexperiments8. Here,wedouble the
size of this resource by re-analyzing a further 205 experiments
using the same pipeline (Supplementary Data 1 and Supplementary
Fig. 2a, b). The updated resource, which we named CFdb, now com-
prises 20.1 million measurements of protein abundance derived from
128.7 million sequenced peptides across 21,703 fractions. Proteomic
analysis of all 21,703 fractions required a total of 43.2 months of
uninterrupted instrument time (Fig. 1a, b), emphasizing the value of
meta-analysis to assemble a resource whose scale would make it
impractical to acquire within a single laboratory.

Results
CFdb incorporates data for eight species that were not represented in
our original dataset, but also reflects major expansions in the data
available for human, mouse, Arabidopsis, and yeast (Supplementary
Fig. 2c, d). For example, reanalysis of an additional 120 datasets
increased the amount of human CF-MS data by a factor of 2.5×,
enabling the detection of 1958 human proteins that were not repre-
sented in the original resource andmarkedly increasing the number of
well-quantified proteins (e.g., those detected in at least 500 fractions;
Fig. 1c, Supplementary Fig. 3a, b, and Supplementary Data 2). Similar
expansions in proteomecoveragewereobserved formouse, yeast, and
Arabidopsis (Supplementary Fig. 3c–k). Proteins that were detected
exclusively in the updated resource tended to be of low abundance
and tissue-specific (Fig. 1d, e and Supplementary Fig. 4a–e). Saturation
analysis suggested that, at least for human, additional CF-MS data
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would bring diminishing returns: we estimated that doubling the
number of human CF-MS experiments again would increase the
number of quantified proteins by just ~1200, from 11,912 to 13,155
(Supplementary Fig. 4f, g).

We used CFTK8 to reconstruct protein interaction networks for
every species in CFdb profiled in at least three experiments, including
several not represented in our original resource. For example, meta-
analysis of fiveCF-MS experiments in E. coli allowed us to reconstruct a
network of 5276 protein-protein interactions (Supplementary Fig. 5a).
Similarly, the inclusion of seven additional yeast experiments allowed
us to construct a draft map of the yeast interactome by CFMS (Sup-
plementary Fig. 5b).

The expanded dataset also afforded marked improvements for
previously reported networks. In human, the inclusion of 120 addi-
tional CF-MS experiments allowed us to recover an additional 21,545
interactions, an increase of 45% (Fig. 1e, Supplementary Fig. 5c and
Supplementary Data 3). Moreover, despite this increase in size, mul-
tiple lines of evidence suggested that the updated human interactome
was of comparable or higher quality to our original draft. Proteins
implicated in the same biological processes showed a similar pro-
pensity to interact with one another in either network, and interacting

proteins showed similar patterns of correlation across large proteomic
datasets or colocalization to the same subcellular compartments
(Supplementary Fig. 5d–h). Interestingly, interactions found only in
the updated network were significantly more likely to overlap with at
least one small-scale or high-throughput experiment, supporting the
notion thatmeta-analysis can improve the reproducibility of biological
networks (p = 1.9 × 10–15, χ2 test; Supplementary Fig. 5i–j), although the
overlap between the CF-MS interactome and previous high-
throughput screens remained relatively low (Supplementary Fig. 5k).
Likewise, the addition of 19 mouse CF-MS experiments allowed us to
recover an additional 19,251 interactions, and multiple lines of evi-
dence suggested that the updated mouse interactome was of higher
quality than the networks we hadpreviously reported for sevenmouse
tissues9 (Supplementary Fig. 6).

To place the human CF-MS interactome in context, we compared
it to seven large-scale interactome screens using affinity purification-
mass spectrometry (AP-MS) or yeast two-hybrid (Y2H). Evaluating
these screens on identical sets of true positive and true negative
interactions derived from the CORUM database of protein
complexes10, we found the CF-MS interactome was of comparable or
higher quality to any of these screens at equivalent precision (Fig. 1f).

Synechocystis sp. PCC 6803
Cyanothece ATCC 51142

Anabaena sp. 7120

Salmonella enterica
Escherichia coli

Kuenenia stuttgartiensis

Chlamydomonas reinhardtii
Selaginella moellendorffii

Solanum lycopersicum

Gossypium hirsutum
Arabidopsis thaliana
Brassica oleracea var. italica

Glycine max

Oryza sativa
Triticum aestivum

Zea mays

Podospora anserina
Chaetomium thermophilum

Saccharomyces cerevisiae

Strongylocentrotus purpuratus
Xenopus laevis

Rattus norvegicus
Mus musculus

Homo sapiens

Drosophila melanogaster
Caenorhabditis elegans

Nematostella vectensis

Plasmodium falciparum
Plasmodium knowlesi
Plasmodium berghei

Trypanosoma brucei
Dictyostelium discoideum

c

1

101

102

103

104

# 
of

 fr
ac

tio
ns

0 3000 6000 9000 12000

Protein #

Version 1
Version 2

1,958 additional
proteins detected

+45% increase
in human interactions

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60

Interactions (thousands)

P
re

ci
si

on

Version 1
Version 2

0

10

20

30

40

50

Ve
rs

ion
 1

Nev
er

de
te

cte
d

# 
of

 ti
ss

ue
s 

ex
pr

es
se

d

1

102

104

Ve
rs

ion
 1

P
ro

te
in

 a
bu

nd
an

ce
 (

pp
m

)

d e f

Version 1
Version 2

QUBIC

BioPlex

BioPlex 2
BioPlex 3

293T

BioPlex 3
HCT116

HuRIHI−II−140.25

0.50

0.75

1.00

0 40 80 120

Interactions (thousands)

P
re

ci
si

on

CF−MS
BioPlex 3

(293T)
BioPlex 2
BioPlex 3
(HCT116)

QUBIC

BioPlex

HI−II−14

HuRI

0% 25% 50% 75% 100%

% of GO terms

0.44 1

AUC

0.66

0.58

0.57

0.58

0.57

0.55

0.52

0.52

CF−MS

BioPlex 3
(293T)

BioPlex 3
(HCT116)

QUBIC

BioPlex 2

BioPlex

HI−II−14

HuRI

0% 25% 50% 75% 100%

% of diseases

0.45 0.98

AUC

0.55

0.51

0.51

0.51

0.50

0.50

0.50

0.50

CF−MS

BioPlex 3
(HCT116)

QUBIC

BioPlex 2

BioPlex

BioPlex 3
(293T)

HuRI

HI−II−14

0% 25% 50% 75% 100%

% of interactions

−1 1

Correlation

0.27

0.12

0.10

0.11

0.11

0.10

0.06

0.03

−0.99 1

Correlation

CF−MS

BioPlex 3
(HCT116)

BioPlex

BioPlex 3
(293T)

BioPlex 2

QUBIC

HuRI

HI−II−14

0% 25% 50% 75% 100%

% of interactions

0.73

0.54

0.50

0.45

0.44

0.27

0.18

0.09

g h i j k

Nev
er

de
te

cte
d

Ver
sio

n 
2

on
ly

Ver
sio

n 
2

on
ly

a

Fig. 1 | A harmonized resource of CF-MS data charts protein abundance and
interactions across the tree of life. a Phylogenetic tree showing the 32 species
with CF-MS data included in CFdb. b Expansions to the scope and coverage of CF-
MS data in CFdb (“version 2”), as compared to our original meta-analysis (“version
1”). Phosphosite quantifications are assigned exclusively to version 2 because CF-
MS datasets were not searched for phosphopeptides in our original meta-analysis.
c Cumulative distribution function showing the number of fractions in which each
human protein was quantified. Inset pie chart shows the total proportion of human
proteins detected in at least one CF-MS fraction. d Abundance of human proteins
detected by CF-MS in the original meta-analysis or the updated resource, versus
those never detected by CF-MS, based on consensus protein abundance estimates
from the PaxDb database61 (for n = 8,248 proteins overlapping between CFdb and
PaxDb). e Tissue specificity of human proteins detected by CF-MS in the original
meta-analysis or the updated resource, versus those never detected by CF-MS (for
n = 10,978 proteins overlapping between CFdb and the Human Protein Atlas).

f Precision of the human interactome inferred by meta-analysis of CF-MS experi-
ments in CFdb as compared to our original meta-analysis, for interaction networks
of a given size. g Precision of the human interactome inferred by meta-analysis of
CF-MSexperiments inCFdb for interactionnetworksof a given size, as compared to
six high-throughput screens of the human interactome using Y2H or AP-MS.
h–k, Comparisons to previous interactome screens highlight the quality of the
CFdb human interactome. h Functional coherence of interactome networks, as
quantified by the AUC of protein function prediction in cross-validation. Text
shows the median AUC. Vertical lines show the proportion of GO terms with AUC
less than 0.5, equivalent to random chance. i Coexpression of interacting protein
pairs across a large proteomic dataset. Text shows themedian Pearson correlation.
Vertical lines show the proportion of negatively correlated pairs88. j Colocalization
of interacting protein pairs by subcellular proteomics. k Connectivity between
genes associated with the same disease, as quantified by the AUC of disease gene
prediction in cross-validation. Source data are provided as a Source Data file.
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This conclusionwas further corroborated by the functional coherence,
coexpression, and colocalization of interacting proteins within each
network (Fig. 1g–i and Supplementary Fig. 5l–m). Intriguingly, genes
associated with the same disease showed a particularly strong ten-
dency to interact with one another in the CF-MS interactome as
compared to other screens, suggesting this network could be parti-
cularly valuable in interpreting exome sequencing or genome-wide
association studies11,12 (Fig. 1k).

CF-MS has been used to identify phosphorylation-dependent
interactions by comparing phosphorylase-treated and untreated
samples13. We askedwhether large-scale CF-MSdata, collectedwithout
bespoke experimental strategies, could inform on the phosphoryla-
tion state of interacting proteins. Searching all 411 experiments for
phosphopeptides yielded a resource of 742,040 phosphosite quanti-
fications (Fig. 1b). Despite the lack of phosphopeptide enrichment, an
average of 323 phosphosites and 183 phosphoproteinswerequantified
per experiment, and many individual phosphosites were measured
across hundreds of fractions (Fig. 2a and Supplementary Fig. 7a–h).
Phosphosites detected in a greater number of fractions or experiments
tended to be more technically reliable (as quantified by either the
localization probability or the delta score) and display a higher stoi-
chiometry to the unmodified peptide (Supplementary Fig. 7i–p).
Interestingly, whereas radioisotope14 and phosphoproteomic15 data
suggest that phosphotyrosines (pY) account for less than 1% of the
phosphoproteome, we observed a substantially greater proportion of
pY sites in CF-MS data (Fig. 2b and Supplementary Fig. 8a–c). Tyrosine
residues accounted for 15.1% of the phosphosites detected by CF-MS,
similar to the proportion in the curated PhosphoSitePlus database16

(16.5%) but greater than that observed in the largest meta-analysis of
phospho-enriched proteomics datasets to date (5.1%)17. Given that
most CF-MS protocols enrich for protein complexes by design, this

observation raised the possibility that tyrosine phosphosites might be
overrepresented within protein complexes. In agreement with this
possibility, pY-containing proteins were also enriched among protein
complexes in a large-scale meta-analysis of phosphoproteomic
datasets17 (Supplementary Fig. 8d), and this enrichment remained-
statistically significant when controlling for protein abundance
(p = 9.4 × 10–4, logistic regression).

Phosphoproteomic experiments typically detect thousands of
phosphosites, but assigning function to these sites is challenging17,18.
One promising approach involves using machine learning to integrate
multiple sources of information into a single score reflecting the
functional relevance of a given phosphosite17. Remarkably, we found
that phosphosites that were detected by CF-MS had significantly
higher functional scores than the proteome average (Fig. 2c). More-
over, phosphosite functional scores increased with the number of CF-
MS fractions in which a phosphosite was detected, to the point that
phosphosites detected in five or more fractions had functional scores
similar to those of known regulatory phosphosites17 (Fig. 2d). Some of
these phosphosites may play a role in regulating protein-protein
interactions. For example, one of the most frequently quantified
human phosphosites was S21 of TPI1, a residuewhose phosphorylation
was recently reported to regulate the assembly of this protein into
homodimers19. Consistent with this notion, S21 phosphopeptides were
specific to one of two chromatographic peaks across CF-MS datasets
(Fig. 2f). Similarly, we identified multiple frequently quantified phos-
phosites inNES, but found thatwhereasmost of thesewere detected in
the highest-intensity CF-MS peak, peptides phosphorylated at S1347
were specific to a secondary, low-intensity peak (Supplemen-
tary Fig. 7q).

Phosphosites detected in five or more CF-MS fractions had a
number of unusual features relative to the phosphoproteome average.
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interactome networks reconstructed for four prokaryotes by random forest clas-
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as quantified by the area under the ROC curve (AUROC). Source data are provided
as a Source Data file.
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In an independent phosphoproteomic dataset, these phosphosites
tended to be identified in more samples, by moreMS/MS spectra, and
with higher localization probabilities, all features characteristic of
more reliable identifications (Supplementary Fig. 9a–c). They were
also more likely to be located in intrinsically disordered regions20 and
in recurrently phosphorylated structural regions (phosphorylation
‘hotspots’21), both of which are known to be enriched for functional
phosphosites (Supplementary Fig. 9d–e). Frequently quantified phos-
phosites were more likely to match known protein kinase motifs, and
kinase-substrate enrichment analysis16 identified several kinaseswhose
known substrates were enriched among these phosphosites, with the
most significant enrichments for CK2A1, CDK1, and CDK2 (Supple-
mentary Fig. 9f–h). Last, estimates of phosphosite evolutionary age22

suggested that frequently quantified phosphosites were evolutionarily
ancient, with human-specific phosphosites depleted and phosphosites
conserved across tetrapods or bilaterians enriched among this set
(Supplementary Fig. 9i).

Calculation of phosphosite functional scores requires the labor-
ious integration of proteomic, structural, regulatory and evolutionary
datasets, which has so far limited this approach to the human pro-
teome. Theobservation that phosphosites quantified in at leastfiveCF-
MS fractions display functional scores comparable to known reg-
ulatory phosphosites suggested that detection by CF-MS could be
used to prioritize functional phosphosites across species. To evaluate
this possibility, we searched for phosphosites detected in at least five
CF-MS fractions in other species, recognizing that imposed a some-
whatmore stringent criterion because fewer fractions were profiled by
CF-MS in species other than human (Supplementary Fig. 9j). Beyond
human, an average of 543 phosphosites per species met this criterion,
yielding a total of 16,832 phosphosites across 31 species (Fig. 2e and
Supplementary Data 4). Together, these results suggest that CFdb can
contribute to prioritization of functional phosphosites across species,
although it is important to emphasize that CF-MS does in and of itself
not provide direct evidence of function.

Proteome-scale technologies like CF-MS have attracted interest
for their potential to shed light on the functions of poorly character-
izedproteins23. Among the 11,912 humanproteins quantifiedbyCF-MS,
488were linked to 10or fewer PubMed IDs. Of these, ourmeta-analysis
detected a protein-protein interaction or prioritized a regulatory
phosphosite for 346, supporting the potential for large-scale data
integration approaches to assist in functional annotation (Fig. 2g and
Supplementary Fig. 10).

To date, the dominant paradigm in the field has been to analyze
each newly collected CF-MS dataset in isolation. We asked whether
CFdb could augment analyses of smaller-scale CF-MS projects, such as
those carried outwithin individual laboratories.We reasoned that such
approaches could be particularly useful for studies of non-model
organisms, in which few protein complexes may be known.

As a proof of concept, we carried out a new set of CF-MS experi-
ments in honey bee (Apis mellifera). Honey bees are pollinators that
play central roles in global agriculture24,25. However, the honey bee
interactome remains largely unmapped. This gap reflects a number of
challenges that are common to the study of non-model organisms,
including a lack of established cell culture systems, limited amenability
to geneticmanipulation, and incomplete proteome annotation. CF-MS
is well-suited to overcome these limitations by enabling interactome
mapping under physiological conditions within in vivo tissues, and
without requiring validated antibodies or the introduction of
protein tags.

As a first step towards mapping the honey bee interactome, we
profiled the honey bee midgut by CF-MS. The midgut was selected as
the primary site of infection for a prevalent honey bee pathogen,
Vairimorpha (Nosema) ceranae, that has been implicated in the col-
lapse of honey bee colonies. Ten CF-MS experiments were performed
in which 40 fractions were collected and mass spectrometry data was

acquired with data-independent acquisition (DIA), while an eleventh
experiment was analyzed using data-dependent acquisition (DDA). An
average of 2092 proteins were quantified per replicate, yielding a total
of 319,105 protein quantifications across all 440 fractions.

We then sought to infer protein interaction networks for the
honey bee midgut from this dataset. However, of the 5163 human
proteins within the CORUMdatabase10, only 1200 could bemapped to
a bee ortholog, limiting the amount of training data available for net-
work inference. We therefore devised a data augmentation strategy
that leveraged CFdb to augment our bee data with labeled protein
pairs that were sampled randomly from 206 human or mouse CF-MS
experiments (Supplementary Fig. 11a). This strategy increased the size
of the honey bee CF-MS interactome by 64.7%, while simultaneously
improving its functional coherence (Fig. 2h, Supplementary Fig. 11b, c,
and Supplementary Data 5). Moreover, interacting proteins in either
network showed comparable patterns of coexpression across a large
honey bee proteomic dataset26, and their fly orthologs displayed
comparable patterns of co-elution in an independent CF-MS dataset27

(Supplementary Fig. 11d, e). Data augmentation enabled improved
coverage of several CORUM protein complexes with one-to-one
orthologs in honey bee, such as the 26 S proteasome, the LSm2-8
complex, and the 20 S methylosome (Supplementary Fig. 11f). Beyond
better coverage of known complexes, data augmentation also enabled
the identification of previously unidentified interactions. For instance,
we identified an interaction between calreticulin and inositol3-
phosphate synthase. This interaction was not annotated in any spe-
cies in the BioGRID database28, but these proteins were previously
found to co-purify in a large AP-MS study of the fly interactome29,
supporting the existence of an orthologous interaction in honey bee
(Supplementary Fig. 11g, h).

We also asked whether CFdb could enable interactome mapping
without requiring a training dataset of known protein complexes. To
explore this possibility, we focused on four understudied prokaryotes
(Anabaena sp. 7120, Cyanothece sp. ATCC 51142, Kuenenia stuttgar-
tiensis, and Synechocystis sp. PCC 6803) represented in CFdb30–33.
Among the known protein complexes in the EcoCyc database34, just
158 to 190 intra-complex interactions could be mapped to one-to-one
orthologs in each of these four species, presenting a challenge to the
supervised machine-learning approach that is the dominant paradigm
in CF-MS data analysis. We hypothesized that a machine-learning
model trained on aggregate patterns of protein complex co-elution
across 206 humanormouseCF-MS experiments could enable network
inference in these species without requiring a training set of species-
specific protein complexes. Consistent with this hypothesis, a random
forest classifier trained on human and mouse experiments better
separated intra- and inter-complex interactions derived from EcoCyc
than supervised machine-learning within each species (Fig. 2i and
Supplementary Fig. 12a). Moreover, protein interaction networks
derived from the classifier trained on human and mouse experiments
also demonstrated a higher degree of functional coherence than net-
works derived from within-species machine-learning (Supplementary
Fig. 12b). These findings indicate that for non-model organisms in
which few known protein complexes are available to train a classifier,
learning from human and mouse CF-MS datasets can enable de novo
network inference.

Discussion
The increasing uptake of CF-MS has led to the deposition of hundreds
of datasets in public proteomic repositories. However, these datasets
are generally collected and analyzed in isolation by individual labora-
tories. Here, we explored the possibility of aggregating biologically
and technically heterogeneous CF-MS data at the repository scale. We
reanalyzed 21,703 fractions from 411 CF-MS experiments using a uni-
form computational pipeline that standardized protein identification,
quantification, and quality control. This expanded resource

Article https://doi.org/10.1038/s41467-023-44139-5

Nature Communications |         (2023) 14:8365 4



incorporated data from eight additional species and substantially
expanded the proteome coverage of humans andmodel organisms by
CF-MS. It also dramatically improved our ability to infer protein
interaction networks throughmeta-analysis of all available CF-MS data
for any given species. For example, through meta-analysis of 166 CF-
MS experiments, we have produced a map of the human interactome
that multiple lines of evidence suggest is among the highest-quality
interactome maps currently in existence. Similarly, we present a high-
quality map of the mouse interactome derived from meta-analysis of
40CF-MS experiments, aswell asCF-MS interactomes formajormodel
organisms not covered in our original resource such as yeast or E. coli.
These networks include interactions for hundreds of low-abundance,
tissue-specific, and/or understudied proteins not captured in our ori-
ginal resource. We carried out extensive comparisons to other func-
tional genomics datasets that substantiate the quality of the inferred
networks at a systems level. However, we caution users of this resource
that any particular interaction should in isolation be regarded as
putative until confirmed experimentally using an orthogonal
technique.

Beyond protein-protein interactions, we also carried out a meta-
analysis of protein phosphorylation across all 21,703 fractions. This
resource adds to the relatively small number of phosphoproteomic
meta-analyses that have been carried out to date17,35,36, and provides a
dataset that can be used to answer a number of different biological
questions or contribute to the development of new computational
tools, such as methods to computationally predict phosphorylation
sites37,38 or phosphopeptide mass spectra39–41. This resource is also
unique in that protein phosphorylation has rarely been investigated
with CF-MS, except by studies that employed bespoke experimental
designs13. Here, we show that, despite the lack of explicit phospho-
peptide enrichment in published CF-MS datasets, many phosphosites
are detected across dozens or hundreds of fractions. These frequently
detected phosphosites have a number of unusual features relative to
the phosphoproteome average. They are evolutionarily ancient, enri-
ched in intrinsically disordered regions and phosphorylation hotspots,
more likely tomatch knownproteinkinasemotifs, and enriched for the
targets of several protein kinases. These properties are reflected in the
assignment of disproportionately high functional scores to frequently-
detectedphosphosites byonemachine-learning approach17, relative to
both phosphosites ever detected by CF-MS and to the human phos-
phoproteome in general. Together, these observations suggest that
CFdb can contribute a new source of data to efforts to prioritize
functional phosphosites across species. However, two major limita-
tions of our analysis are important to note: CF-MS does not in and of
itself provide direct evidence of phosphosite function, and here we
used a simple heuristic of detection in at least five fractions to prior-
itize phosphosites based on CF-MS. Although this heuristic allowed us
to study a number of interesting features of frequently detected
phosphosites, integrating data from CFdb with other proteomic,
structural, regulatory and evolutionary datasets will provide a more
robust basis for phosphosite prioritization in the future.

Our meta-analytical approach has both strengths and limitations.
Our goal in this studywas to leverage the vast quantities of CF-MS data
that have been deposited to public repositories in order to identify
protein interactions supported by evidence from many biologically
and technically heterogeneous experiments. In other words, we
sought to identify protein pairs that consistently demonstrated co-
elution across different cell lines or tissues, experimental protocols,
andmass spectrometricmethods,with the expectation that thesepairs
would be the most likely to represent bona fide interactions. We rea-
soned thatdrawingondozensorhundreds of experiments in anygiven
species would allow us to separate signal from noise to accurately
identify these pairs. To minimize unnecessary variation in data pre-
processing or quality control, and further increase our ability to
separate signal from noise, we re-processed the raw data from all 411

CF-MS experiments through a uniform pipeline, which is a significant
strength of this resource. On the other hand, the goal of identifying
robust, global interactions is at odds with the application of CF-MS to
identify context-specific interactions that might only be detected
when focusing on particular biological systems, as we and others have
explored6,9,42–46. These context-specific interactions will expectantly
require more focused analyses of smaller (but biologically and tech-
nically homogenous) datasets to detect.

Our meta-analytical approach also meant that we were limited
both by the biological scope of the CF-MS datasets that have been
deposited to public repositories, as well as the technical limitations of
CF-MS itself. For example, whereas CFdb encompasses large resources
of uniformly processed CF-MS data from human, Arabidopsis, and
mouse, there are clearly still opportunities to apply CF-MS more
broadly in less-studied organisms (Supplementary Fig. 2c, d). Similarly,
while the expansionofCF-MSdata in these species allowedus todetect
many low-abundance proteins that were not observed in our original
resource, this does not negate themore general bias of CF-MS towards
highly abundant proteins, which tend to be quantified in the greatest
number of fractions (Supplementary Fig. 4b, c).

Beyond the meta-analyses of CF-MS data described here, CFdb
also provides a springboard for the development of even more com-
prehensive and accurate interactome resources by integrating CF-MS
data with data fromother proteomic techniques. Efforts to this end47,48

have demonstrated the feasibility of integratingCF-MSdatawithAPMS
and proximity labeling datasets to develop integrated interaction
networks, using amachine-learning approach similar to that employed
here. Future efforts in this vein might additionally draw on thermal
protein co-aggregation49, protein co-abundance50,51, or structure-based
computational inferences52 to further increase the scope and accuracy
of network inference. Notably, combining data from multiple ortho-
gonal techniques could at least partially mitigate some of the inherent
biases of CF-MS, such as its preference for stable macromolecular
complexes over transient interactions.

With CFdb, we provide a suite of data resources to probe pro-
teome organization across the tree of life. Our results highlight the
power of large-scale data integration to answer fundamental questions
and create additional proteome-scale resources, and open up new
avenues to enhance the analysis of CF-MS datasets by drawing on a
wealth of published data.

Methods
Comparison of human interactome screens
Data from seven high-throughput screens of the human interactome
performed using Y2H or APMS since 2014 was obtained from the
supplementary information of the relevant publications or their
accompanying websites53–58. Protein identifiers were mapped to gene
names using flat files downloaded from the UniProt web server, and
interacting protein pairs were alphabetized. Overlap between inter-
actome networks was quantified using the Jaccard index.

MaxQuant searches
We carried out an extensive review of the literature to identify CF-MS
experiments that had been published since our original review in May
2020, or which had been overlooked due to differences in terminol-
ogy. This search identified an additional 205 CF-MS experiments from
41 publications for which raw mass spectrometric data were available
as of November, 2022. A handful of experiments performed using
data-independent acquisition (DIA) were excluded so as to process all
files with an identical pipeline. Raw data were downloaded from the
MassIVE or PRIDE repositories, and experimental designs were
manually curated to group files into experiments and fractions.
Instrument time for each file analyzed was calculated from Thermo
RAW files using RawTools59 (version 2.0.2) and manually retrieved
from the corresponding publications for other formats. The complete
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list of all CF-MS experiments and rawdata files analyzed in this study is
provided in Supplementary Data 1.

MaxQuant (version 1.6.5.0) was used to search each experiment
against theUniProt complete proteome for the corresponding species,
including unreviewed accessions and isoforms, after removal of pro-
teins less than ten amino acids long and supplementation with a list of
common contaminants provided by MaxQuant, as previously
described8. FASTA files are available from GitHub at https://github.
com/skinnider/CFdb-searches. Search parameters varied across
experiments, but, in general, carbamidomethylation of cysteine was
set as a fixed modification, while protein N-terminal acetylation and
methionine oxidation were set as variable modifications, and trypsin
cleavage was used with up to two missed cleavages. These defaults
were then modified as needed for datasets collected with SILAC or
TMT labeling, or with proteases other than trypsin. For two in vivo
datasets (PXD007288, PXD022309), parameters included semi-
specific cleavage with a maximum of two missed cleavages. Instru-
ment settings were adjusted based on the mass spectrometer used to
perform the CF-MS experiment. All searches were subsequently repe-
ated with phosphorylation enabled as a variable modification, with
default settings including 1% PSM FDR, 1% site-level FDR, a minimum
Andromeda score of 40 and aminimumdelta score of 6. Code used to
download the raw data, create ‘mqpar.xml’ files and carry out Max-
Quant searches is available from GitHub at https://github.com/
skinnider/CFdb-searches. Complete MaxQuant outputs are available
from PRIDE under the accession PXD042664.

Preprocessing
MaxQuant outputs (‘proteinGroups.txt’ files) were preprocessed by
removing potential contaminants, reverse hits and proteins identified
only by peptides carrying one ormoremodified amino acids60. Protein
groups were mapped to gene symbols to enable matching across
replicates. For gene symbols that mapped to more than one protein
group, only the chromatogram with the fewest missing values was
retained. Identifier mapping was performed with flat files downloaded
from the UniProt web server. Total numbers of tandem mass spectra
and sequenced peptides were obtained from MaxQuant
‘summary.txt’ files.

Properties of proteins detected by CF-MS
Human, mouse, and Arabidopsis whole-organism protein-abundance
estimates inparts permillionwereobtained fromPaxDb (version 4.1)61.
Estimates of human protein tissue specificity were obtained from the
Human Protein Atlas (version 22.0, file ‘normal_tissue.tsv.zip’) based
on the number of tissues in which a given protein was found to be
detectably expressed62. Coverage of protein complexes was assessed
with respect to the core set ofprotein complexes fromCORUMversion
3.0 (file ‘coreComplexes.txt’), with redundant entries removed10. GO
terms enrichment analysis of complex proteins detected by CF-MS
exclusively in the updated resource was performed using the ‘GOstats’
R package63. Saturation analysis was performed by sampling human,
mouse, yeast, and Arabidopsis experiments in random order and cal-
culating the total number of proteins quantified in at least one fraction
at each step. The process was repeated ten times to estimate varia-
bility. A logarithmic curvewasfit to the data to project future increases
in the human proteome detected by CF-MS with additional experi-
ments. To identify understudied proteins, the number of PubMed IDs
associated with each human protein was obtained from PubMed (file
‘gene2pubmed.gz’).

Network inference
Interactomenetworkswere inferred for each species represented by at
least three CF-MS experiments in CFdb using our previously described
computational approach, CFTK8. The machine-learning approach is
described in detail in the Supplementary Note. Briefly, CFTK infers

networks by combining information across multiple CF-MS experi-
ments, using a supervised machine learning paradigm that has been
widely applied tomap interactome networks fromCF-MSdata7,9,27,64–66.
In this paradigm, a machine-learning model is trained to identify
interacting protein pairs, using a training set constructed from known
protein complexes (for example, those annotated within the CORUM
database10), such that proteins within the same complex are labeled as
interacting pairs and proteins in different complexes are labeled as
non-interacting pairs. The data provided as input to themodel consists
of a series of features computed from one or more CF-MS datasets,
each reflecting the similarity between two protein chromatograms in a
given dataset. For example, one feature might capture the Pearson
correlation between protein chromatograms in a particular CF-MS
dataset. Calculating the Pearson correlation across multiple CF-MS
datasets would then yield a series of features (one for each experi-
ment), each of which would be provided as input to the machine-
learningmodel. Themodel is trained to predict whether any given pair
of proteins interact, given these features as input. Themodel is trained
in cross-validation to avoid leaking information between the training
and test data, and to allow for the possibility that some known com-
plexes may not be assembled in a given dataset. This approach allows
CFTK to take as input (i) a set of features computed from one or more
CF-MS datasets and (ii) a known set of protein complexes or inter-
acting protein pairs, and return to the user a ranked list of interacting
protein pairs, which can then be thresholded at a desired precision.

A critical decision in this workflow entails the choice of features
that will be used to represent the similarity of any two protein chro-
matograms in a given CF-MS dataset. In our original meta-analysis, we
established optimal combinations of measures of association and
missing value-handling strategies that best separated interacting from
non-interacting protein pairs across datasets8. Here, we used these
optimal combinations to derive features for each CF-MS dataset. The
number of optimal features per dataset varied according to the num-
ber of CF-MS datasets that had been performed in that species. For
species with more than ten datasets, we calculated a single feature per
dataset; for species with six to ten datasets, we calculated two features
per experiment; and for species with five or fewer datasets, we calcu-
lated four features per dataset. The top-four optimal features identi-
fied in our previous analysis were, in descending order:

• Distance correlation, with missing values imputed as zeroes
• Weighted cross-correlation, with missing values imputed

as zeroes
• Cosine similarity, withmissing values imputed asnear-zeronoise
• Mutual information, with missing values treated as NAs

All features were calculated using CFTK (https://github.com/
fosterlab/CFTK), as previously described8. Proteins quantified in less
than four fractions per dataset were filtered. For eukaryotes, labeled
protein pairs were obtained from the CORUMdatabase10 and ortholog
mapping was performed using the eggNOG ‘euk’ database with the
eggnog-mapper tool (version 1.0.3)67. For prokaryotes, labeled protein
pairs were obtained from the EcoCyc database34 (file ‘protcplxs.col’)
and ortholog mapping was performed using the eggNOG ‘bact’
database.

Network evaluation
Precision was calculated at each point in the ranked interaction list
using the labeled protein pairs in that species, and these curves were
used to compare the performance of the CFdb interactomeswith high-
throughput screens in human, mouse, E. coli, and yeast. The same
“gold standard” set of positive andnegative interactionswas generated
from the CORUM database of curated mammalian protein complexes,
and applied to all of theCF-MS andpublishednetworks analyzed in this
study. Positive examples were defined as pairs of proteins that are part
of the same complex (“intra-complex” interactions), whereas negative
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examples were defined as pairs of proteins that are both in the set of
complexes but not part of the same complex (“inter-complex” inter-
actions). Networks were thresholded at 50% precision, with the
understanding that this would provide a highly conservative estimate
of true precision: following standard practice within the field, we treat
pairs of CORUM proteins found in different complexes as true nega-
tives, meaning that true negatives outnumber true positives by a large
margin, and likely include a significant fraction of protein pairs that do
participate in interactions that are not captured by the CORUM
database8. Therefore, to further contextualize the performance of the
CFdb interactomes,wedrewonmultiple orthogonal lines of functional
genomic evidence, which were as follows:

• The functional coherenceof eachnetwork, defined as thedegree
towhich the function of any given protein can bepredicted from
those of its interacting partners, based on the principle of ‘guilt
by association’68. Briefly, each protein in the network is anno-
tated with its known functions (here, GO terms), and a subset of
these labels are then withheld. A neighbor-voting algorithm is
then employed to predict functions for the withheld proteins by
assigning a score for each GO term that represents the
proportion of the protein’s interacting partners annotated with
the same term. This process is repeated in three-fold cross-
validation, and the mean AUC over cross-validation folds is
computed for each GO term. A high AUC is characteristic of
networks in which proteins that share biological functions tend
to be physically connected. Functional coherence analysis was
carried out using the ‘EGAD’ R package69, filtering GO terms
annotated to less than ten or more than 100 proteins. For
pairwise comparisons, only GO terms that met this criterion in
both networks were included. GO annotations supported only
by evidence codes ND, IPI, IEA, and/or NAS were filtered.

• The tendency for interacting proteins to display correlated
patterns of abundance across large-scale proteomic datasets. In
human, we used the same proteomic datasets as in our previous
analysis, namely a meta-analysis of 294 biological conditions
using SILAC proteomics in the ProteomeHD resource50 and a
proteomic dataset from cancer cell lines70. In mouse, we used
two maps of the mouse tissue proteome71,72. Coexpression was
quantified using the Pearson correlation.

• The tendency for interacting proteins to colocalize to the same
subcellular compartments in subcellular proteomic datasets73,74.
Colocalization was quantified using the Pearson correlation.

• For human networks, we additionally quantified the tendency for
genes associated with the same human diseases to physically
interact. Disease gene annotationswere aggregated frommultiple
sources, includingOnlineMendelian Inheritance inMan (OMIM)75,
the NCBI Phenotype-Genotype Integrator (PheGenI)76, the Mouse
Genome Database (MGD)77, DisGeNET78, and Menche et al.79.
Connectivity between disease genes was quantified using the
same cross-validation framework as described above for network
functional coherence, but here predicting withheld disease genes
based on a protein’s neighbors in the interactome network.

Phosphorylation
To identify phosphopeptides in CF-MS data, all 411 CF-MS experiments
were subjected to a secondMaxQuant search with STY phosphorylation
set as a variable modification. MaxQuant outputs (‘Phospho(STY)
Sites.txt’ files) were preprocessed by removing phosphosites from
reversed peptides or potential contaminants. The intensity of each
phosphosite in each fraction, as well as the ratio between modified and
unmodified phosphosite intensities (phosphorylation stoichiometry),
were extracted. For datasets collected with SILAC or dimethyl labeling,
we additionally extracted the isotopologue ratio of each phosphosite.
For TMT datasets, reporter intensities for phosphosites were not output

by MaxQuant, meaning that only aggregate measurements of phos-
phosite intensity and stoichiometry over all experiments in the TMT
plex could be obtained. Phosphosite intensity, stoichiometry, and iso-
topologue ratio chromatograms for all 411 experiments are available
from Zenodo (“Data availability”).

To investigate the functional relevance of phosphosites quantified
byCF-MS, we obtained phosphosite functional scores for 116,258 scored
human sites from Ochoa et al.17. Briefly, these scores reflect an estimate
of the importance of a given phosphosite for organismal fitness derived
from a machine-learning model trained to identify phosphosites with a
known regulatory role. The model integrates 59 proteomic, structural,
regulatory and evolutionary features, including protein andphosphosite
abundance, tissue specificity, evolutionary age, kinase specificity, and
presence of neighboring PTMs, among others. Scored phosphosites
were detected in a meta-analysis of 6801 phosphoproteomic experi-
ments that specifically enriched for phosphorylated peptides. Func-
tional scores were then compared against the number of fractions or
experiments in which a given phosphosite was detected in CFdb. We
noted that the median functional score of phosphosite detected in at
least 5 fractions was comparable to that of known regulatory sites as
shown in Ochoa et al. Based on this observation, we identified phos-
phosites detected in 5+ fractions in all other species in the dataset to
provide a prioritized list of candidate regulatory phosphosites based on
CF-MS data integration. We also computed the fraction of tyrosine
phosphosites among phosphosites detected in 5+ fractions, and com-
pared this to the fraction in theOchoa et al.meta-analysis.Moreover, we
calculated the enrichment of phosphotyrosine-containing proteins
among CORUM complex proteins as compared to proteins phos-
phorylated on serine or threonine residues, using the Ochoa et al.
dataset, and confirmed that this relationship remained significant when
adjusting for protein abundance estimates from PaxDb using multi-
variable logistic regression.

To characterize the structural, evolutionary, and signaling prop-
erties of phosphosites detected in at least five CF-MS fractions, we
used a dataset of phosphosite properties compiled by Ochoa et al.17.
Mass spectrometric properties (number of spectral counts, number of
biological samples, and maximum localization probabilities) for each
phosphosite were based on an independent resource of 6801 phos-
phoproteomics experiments, in which no samples overlapped with
those used in CFdb. Disordered protein regions were identified with
DISOPRED80. Phosphorylation hotspots21 were identified as protein
domains with significant enrichment in phosphorylation over random,
using code available from https://github.com/evocellnet/ptm_
hotspots. Phosphosite matches to known protein kinase motifs were
assessed using two complementary strategies, first by compiling
positionweightmatrices basedon kinase-substrate relationships in the
PhosphoSitePlus database16, and second by using NetPhorest81 to
predict whether acceptor residues matched to a kinase recognition
motif or phosphorylation-dependent binding domain. Separately, we
performed a kinase-substrate enrichment analysis by using the
hypergeometric test to identify kinases enriched among phosphosites
identified infive ormoreCF-MS fractions compared to thebackground
of phosphosites ever identified by CF-MS, using annotated kinase-
substrate relationships from PhosphoSitePlus16. The ancestral age of
human phosphosites was reconstructed by combining phylogenetic
information with cross-species phosphoproteomics, using a pre-
viously described method22 (code available from https://github.com/
evocellnet/ptmAge).

Honey bee CF-MS experiments
Honey bees were emerged from a brood frame in a 33◦C incubator.
Eight honey bee midguts per sample were dissected on ice with for-
ceps and rinsed with cold 1× PBS. The tissues were then disrupted on
ice with a Dounce homogenizer in 1mL of lysis buffer [size exclusion
chromatography (SEC) buffer: 50mM potassium chloride, 50mM
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sodium acetate and 50mM Tris Base at pH of 7.2, with 1× HALT pro-
tease inhibitor (Thermo Fisher)] for three 1min intervals using a tight
pestle. The lysates were transferred into thick-walled ultracentrifuge
tubes (Seton) and precleared of insoluble components by ultra-
centrifugation at 4°C for 15min at 100,000 × g. The supernatants were
concentrated to ~200 µL using ultrafiltration spin columns with
100 kDa molecular weight cut-off membranes (Vivaspin and Amicon)
to isolate protein complexes. 1 g of each sample was then fractionated
by size exclusion chromatography on a 1200 series HPLC instrument
(Agilent Technologies) using two connected columns (Sepax SRT-C
SEC-500, 5 µM 500Å 7.8 × 300mm) equilibrated in SEC buffer. The
instrumentwas cooled at 6°C and 80 fractions were collected from20-
30min in a 60min isocratic method with a flow rate of 0.5mL/min.
Fractions were subsequently pooled to 40 fractions prior to protein
digestion.

Protein digestion and cleanup
200 µL of the fractionated samples were constituted with a freshly
prepared mixture of urea and thiourea to a final concentration of 6M
and 2M, respectively. Proteins were then reduced with 2 µg of dithio-
threitol and alkylated with 10 µg of iodoacetamide by incubation at
room temperature for 30 and 20min, respectively. Following this, 1 µg
of LysC/trypsin (Promega) was added to each sample and incubated
for 3 h before diluting the samples with 4 volumes of digestion buffer
(50mM NH4HCO3). Another 1 µg of LysC/trypsin was then added to
digest the proteins overnight. Peptides were acidified in trifluoroacetic
acid and desalted using home-made C18 STAGE-TIPS82 prior to MS
analysis.

LC-MS/MS analysis
Peptides were reconstituted in buffer A (0.5% acetonitrile and 0.1%
formic acid in Baker water) for LC-MS/MS analysis. After their con-
centrations were determined using a NanoDrop spectrophotometer
(Thermo Fisher), 100 ng of each peptide sample was injected onto a
nanoElute UHPLC system (Bruker Daltonics) and separated using an
Aurora Series Gen2 (CSI) 25 cm × 75 µm 1.6 µm FSC C18 column; with
Gen2 nanoZero and CSI fittings (IonOpticks, Australia) at a flow rate of
0.3 µL/min and temperature of 7°C. The column was heated to 50°C
and coupled to a trapped ion mobility-time of flight (timsTOF) Pro
mass spectrometer (Bruker Daltonics) which was operated in DIA-
PASEF mode. A standard 30min gradient was run from 2-12% buffer B
(0.1% formic acid in 99.4% acetonitrile) over 15min, then to 33%B from
15 to 30min, 95% B over 0.5min and finally held at 95% B for 7.72min.
Prior to each run, the analytical column was conditioned using four
column volumes of buffer A.

The timsTOF Pro was set to Parallel Accumulation-Serial Frag-
mentation (PASEF) scan mode for data independent acquisition (DIA)
scanning 100-1700m/z range. The capillary voltage was set to 1800 V,
drying gas to 3 L/min and drying temperature to 180°C. The MS1 scan
was followed by 17 PASEF ramps with 22 non-overlapping 35m/z iso-
lation windows, spanning an m/z range of 219.5-1089.5 (Supplemen-
tary Data 1). In the TIMS, ion mobility range (1/k0) was set to 0.70-
1.35 V·s/cm2, with 100ms ramp time and accumulation time (100%
duty cycle), and ramp rate of 9.42Hz to yield 1.91 s of total cycle time.
The collision energywas ramped linearly as a function ofmobility from
27 eV at 1/k0 =0.7 V·s/cm2 to 55 eV at 1/k0= 1.35 V·s/cm2.

Protein identification and quantitation
Proteins were identified and quantified using Data-Independent
Acquisition by Neural Networks (DIANN, version 1.8.1)83. A ‘library-
free’ search was done via in silico spectral library construction using
the DIA runs and a FASTA file containing the honey bee proteome
(UP000005203) as well as the proteomes of common honey bee
pathogens, all of which were downloaded from UniProt. Cysteine
carbamidomethylation was enabled as a fixed modification with

N-terminal methionine excision enabled and up to one missed clea-
vage. The output files were filtered to a 1% FDR. Non-honey bee pro-
teins and contaminants were filtered prior to further analysis. The
FASTA file, rawmass spectrometry data and all DIA-NN output files are
available at PXD042820.

Data augmentation
Network inference from CF-MS data by supervised machine learning
requires the definition of a training set of known protein complexes.
While large catalogs of protein complexes are available for model
organisms such as human and yeast, such catalogs may be unavailable
for non-model organisms. If this is the case, few labeled protein pairs
will be available to train the machine-learning model, which may in
turn compromise the size or quality of the resulting network.

To date, the prevailing paradigm within the field has been to
analyze each dataset in isolation. We hypothesized that injecting small
amounts of labeled protein features from published datasets could
improve the performance of the classifier in cases where few labeled
protein pairs are available by encouraging the classifier to learn rela-
tionships between chromatographic similarity and interaction prob-
ability that are generalizable across datasets. Importantly, this data
augmentation strategy does not involve supplementing the CF-MS
datawith external evidence that any givenpair ofproteins interact (i.e.,
genomic data integration84), but instead involves providing the clas-
sifier with additional labeled examples that augment the labeled pro-
tein pairs within a given set of CF-MS experiments (Supplementary
Fig. 10a). These injected examples are then discarded after model
training, such that they do not influence the calculation of precision at
any point in the ranked list of protein pairs.

To implement this data augmentation strategy, we computed the
distance correlation for all labeled protein pairs across 206 human and
mouse CF-MS experiments. Protein complexes from CORUM were
mapped to their honey bee orthologs using InParanoid85, and feature
calculation and labeling was performed for the eleven honey bee CF-
MS experiments as described above. After extracting labeled protein
pairs in order to train the model, a random fraction of labeled protein
pairs from the external CF-MS experiments were injected into the
training data, in proportion with the total number of labeled pairs.
Features from external datasets were mapped at random onto indivi-
dual honeybee experiments. Themodelwas trained in cross-validation
on the augmented data, and labeled protein pairs were then discarded
prior to computing the precision only on honey bee protein com-
plexes. The random forestmodel and cross-validation procedure were
thus identical to that used throughout the manuscript, and network
inference differed only insofar as features from a subset of labeled
protein pairs in human or mouse were used to augment the training
data from honey bee. Performance was found to be optimized with
relatively low proportions of labeled data injection (on the order of 25-
50%); the results in the main text show augmentation by a fac-
tor of 33%.

To further corroborate the quality of the honey bee interactome
mapped with or without data augmentation, we performed several
additional analyses. First, the functional coherence of the honey bee
interactome was calculated using EGAD as described above, except
that GO annotations were not filtered by evidence code due to the
sparse annotation of the honey bee genome. Second, the co-
expression of interacting protein pairs was calculated across a large
honey bee proteomic dataset26. Third, interacting protein pairs were
mapped to their orthologs inDrosophila using InParanoid, and the co-
fractionation of these orthologs was calculated in a set of four pub-
lished CF-MS experiments in fly27.

Network inference without a training set of protein complexes
Last, we explored the possibility of using CFdb as a training dataset to
enable network inference in species for which few protein complexes
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are known or can be inferred through orthologymapping. We focused
on four understudied prokaryotes (Anabaena sp. 7120, Cyanothece sp.
ATCC 51142, Kuenenia stuttgartiensis, and Synechocystis sp. PCC 6803)
represented in CFdb for which between 109 and 126 proteins, and just
158 to 190 intra-complex interactions, could be mapped from the
EcoCyc protein complex database to one-to-one orthologs in each
species. We trained random forest classifiers with 100 trees on labeled
protein pairs from 206 human and mouse CF-MS datasets. Labeled
pairs from human andmouse were randomly assigned to replicates so
as tomatch the number of replicates acquired in each prokaryote (two
for Cyanothece sp. ATCC 51142 and Kuenenia stuttgartiensis, four for
Synechocystis sp. PCC 6803, and six for Anabaena sp. 7120). Random
forest models trained on human and mouse data were then used to
score protein pairs in each prokaryote. Because of the limited number
of true-positive and true-negative protein pairs available to calculate
precision, we instead computed the area under the ROC curve over all
scored protein pairs. To assess the functional coherence of the
resulting networks, we thresholded the ranked list of scored protein
pairs to retain only the top-5000 or top-10,000 interactions86, then
used EGAD to quantify the connectivity of proteins annotated with
each GO term, as described above except that GO terms supported
only by the IEA evidence code were not filtered.

Visualization
Throughout the manuscript, box plots show the median (horizontal
line), interquartile range (hinges) and smallest and largest values no
more than 1.5 times the interquartile range (whiskers).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
A list of all rawmass spectrometry files analyzed in this study and their
accession numbers in PRIDE or MassIVE repositories is provided in
Supplementary Data 1. Source code used to download and re-analyzed
published CF-MS data is available at https://github.com/skinnider/
CFdb-searches. Processed chromatograms, phosphosite chromato-
grams, andMaxQuant ‘proteinGroups.txt’ and ‘Phospho(STY) sites.txt’
files are available via Zenodo at https://doi.org/10.5281/zenodo.
8008094. Pre-calculated features for each species are available via
Zenodo at https://doi.org/10.5281/zenodo.8005773. Predicted inter-
actomes for each species are available viaZenodoathttps://doi.org/10.
5281/zenodo.10038713. Complete MaxQuant outputs for all 411 CF-MS
experiments have been deposited to the PRIDE repository87 with the
dataset identifier PXD042664. Honey bee CF-MS datasets have been
deposited to the PRIDE repository with the dataset identifier
PXD042820. Other databases used in the study were as follows: PaxDb
(https://pax-db.org/), Human Protein Atlas (https://www.proteinatlas.
org/), CORUM (http://mips.helmholtz-muenchen.de/corum/), EcoCyc
(https://ecocyc.org/), PhosphoSitePlus (https://www.phosphosite.org/
homeAction.action), and BioGRID (https://thebiogrid.org/). Source
data are provided with this paper.

Code availability
CFTK is available from GitHub at https://github.com/fosterlab/CFTK.
Source code used to download and re-analyzed published CF-MS data
is available at https://github.com/skinnider/CFdb-searches. Source
code used to carry out analyses presented in the paper, including
relevant intermediate data files, is available at https://github.com/
skinnider/CFdb-analysis.
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